性分化 update

2014年小児内分泌学会 東京医科歯科大学 (TMDU) 鹿島田 健一

日本小児内分泌学会 COI開示

筆頭発表者名: 鹿島田健一 演題発表に関連し、開示すべきCOI関係にある 企業等はありません。

ヒトの性分化

(Psychosocial sex, Gender)

今日の内容

- Y染色体
 - SryとEif2s3y
- 性腺分化
 - 精巣分化
 - ・SRY制御、TESCOとSOX分子
 - -精巣、卵巣分化cascadeの拮抗的な作用
- 性腺分化以降
 - IMAGe 症候群

ヒトの性分化

The Minimalist Y

Two Y Genes Can Replace the Entire Y Chromosome for Assisted Reproduction in the Mouse

Yasuhiro Yamauchi, Jonathan M. Riel, Zoia Stoytcheva, Monika A. Ward*

SCIENCE VOL 343 3 JANUARY 2014

 Sry Tg XXマウスでは性腺の体細胞は精巣に分化するものの、 精子形成は認めなかった

P020 斎藤先生

(Koopman et al, 1991, Nature)

2つの遺伝子、*SryとEif2s3y*のみをもつY染色体をもつ
 マウスから取り出したgerm cellを用いることで、生き
 た仔マウスを作成することに成功

ヒトの性分化

性腺における性決定

Modified (Larney et al, 2014, Development)

SRYの制御に関わる分子

Protein/ Gene	Type of the protein	Human (LOF)	Mice (LOF)
WT1 (+KTS)	Transcription factor?	Frasier syndrome (Nat Genet. 1997 17:467)	XY sex reversal (Cell, 2001, Vol. 106, 319)
CBX2/M33	Transcriptional cofactor	XY sex reversal (AmJHumGenet. 2009 84:658)	XY sex reversal (Nature. 1998 18;393)
GATA4/FOG2	Transcription factor/ co repressor?	XY DSD (GATA4) (PNAS 2011 108:1597)	XY sex reversal (Development 2002 129:4627)
Insulin recetpros (Ir, Irr, Igf1r)	Receptors		XY sex reversal (TKO) (Nature. 2003 426:291)
MAP3K4/Gadd45G	Kinase (enzyme)	XY DSD (MAP3K1) (AmJHumGenet. 2010, 87:898) (HMG. 2013, 23: 1073)	XY sex reversal (PLoS Biol.2009 7(9):e1000) (Dev Cell. 2012 23(5):1020) (PLoS One. 2013;8(3):e58751)
SIX1 and SIX4	Transcription Factor (Target: Sf1 and Fog2)		XY reversal (DKO) (Dev Cell. 2013 26(4):416)
Jmjd1a	H3K9 demethylase		XY sex reversal (Science. 2013;341:1106)

赤字: 2010年以降の論文

SRYの制御に関わる分子

Protein/ Gene	Type of the protein	Human (LOF)	Mice (LOF)
WT1 (+KTS)	Transcription factor?	Frasier syndrome (Nat Genet. 1997 17:467)	XY sex reversal (Cell, 2001, Vol. 106, 319)
CBX2/M33	Transcriptional cofactor	XY sex reversal (AmJHumGenet. 2009 84:658)	XY sex reversal (Nature. 1998 18;393)
GATA4/FOG2	Transcription factor/ co repressor?	XY DSD (GATA4) (PNAS 2011 108:1597)	XY sex reversal (Development 2002 129:4627)
Insulin recetpros (Ir, Irr, Igf1r)	Receptors		XY sex reversal (TKO) (Nature. 2003 426:291)
MAP3K4/Gadd45G	Kinase (enzyme)	XY DSD (MAP3K1) (AmJHumGenet. 2010, 87:898) (HMG. 2013, 23: 1073)	XY sex reversal (PLoS Biol.2009 7(9):e1000) (Dev Cell. 2012 23(5):1020) (PLoS One. 2013;8(3):e58751)
SIX1 and SIX4	Transcription Factor (Target: Sf1 and Fog2)		XY reversal (DKO) (Dev Cell. 2013 26(4):416)
Jmjd1a	H3K9 demethylase		XY sex reversal (Science. 2013;341:1106)

GATA4

・ 心臓の発生に重要で、Null mouseは早期胎生致死

(Molekentin et al, 1997, Gen&Dev, Kuo et al, 1997, Gen&Dev, Garg et al, 2003 Nature)

Sryの発現に必須

(Tevosian et al, 2002, **Development**)

原始性腺(生殖降起:genital ridge)の発生に必須
 (Hu et al, 2013, PLos Gen)

Loss-of-function mutation in *GATA4* causes anomalies of human testicular development

Diana Lourenço^a, Raja Brauner^b, Magda Rybczyńska^a, Claire Nihoul-Fékété^c, Ken McElreavey^{a,1}, and Anu Bashamboo^{a,1}

2011, PNAS

- 46XY, DSD
- Dysgenetic testis
- Mullerian structures present
- Ambiguous genitalia

MAP3K4 (MEKK4)

• Sryの発現を制御し、null miceはXY sex reversalを起こす

(Bogani et al, 2009, PLos Biology)

REPORT

Mutations in *MAP3K1* Cause 46,XY Disorders of Sex Development and Implicate a Common Signal Transduction Pathway in Human Testis Determination

Alexander Pearlman,¹ Johnny Loke,¹ Cedric Le Caignec,^{2,3} Stefan White,⁴ Lisa Chin,¹ Andrew Friedman,¹ Nicholas Warr,⁵ John Willan,⁵ David Brauer,¹ Charles Farmer,¹ Eric Brooks,¹ Carole Oddoux,¹ Bridget Riley,¹ Shahin Shajahan,¹ Giovanna Camerino,⁶ Tessa Homfray,⁷ Andrew H. Crosby,⁷ Jenny Couper,⁸ Albert David,² Andy Greenfield,⁵ Andrew Sinclair,⁴ and Harry Ostrer^{1,*}

MAP3K1 & Map3k4

MAP3K1

- 46XY,DSD 患者の変異MAP3K1蛋白は、in vitroで下 流分子(p38, MAPK1, MAPK3)のリン酸化を促進する
- *Map3k1* k/o mouse:性腺の表現型(-)

(Pearlman et al, 2011, AJHG)

MAP3K1の機能獲得変異が精巣発生に影響を与える
 る可能性がある

(Loke et al, 2014, HMG)

Map3k4

Map3k4 null mouseではGATA4のリン酸化が進まず、
 Sryの発現を低下させ、XY sex reversalを起こす

(Gierl et al, 2012, Dev Cell)

Epigenetic control of Sry

Epigenetic Regulation of Mouse Sex Determination by the Histone Demethylase Jmjd1a

Shunsuke Kuroki,¹ Shogo Matoba,² Mika Akiyoshi,¹ Yasuko Matsumura,¹ Hitoshi Miyachi,¹ Nathan Mise,²* Kuniya Abe,² Atsuo Ogura,² Dagmar Wilhelm,³† Peter Koopman,³ Masami Nozaki,⁴ Yoshiakira Kanai,⁵ Yoichi Shinkai,⁶‡ Makoto Tachibana^{1,7}‡

Kuroki et al, 2013, Science

● H3K9me2 ● H3K4me2

Sry制御のまとめ

- GATA4などを中心とした転写因子による制御 - ただし性腺特異的エンハンサーは未同定
- Epigeneticな制御

性腺における性決定

TESCO(Sox9 性腺特異的エンハンサー)の同定 (Sekido and Badge, 2008, Nature)

TESCOの発見でわかったこと

- SRYは「転写因子」として直接Sox9の転写を活性化
- Sox9はSRYの(生理的意義が証明された)唯一の標的

TESCO(Sox9 性腺特異的エンハンサー)の同定 (Sekido and Badge, 2008, Nature)

TESCOの発見でわかったこと

- SRYは「転写因子」として直接Sox9の転写を活性化
- *Sox9*はSRYの(生理的意義が証明された)唯一の標的
- SOX9がSox9を正に制御する (positive feedback loop)

(Journal of Clinical Investigation, 2011)

Identification of SOX3 as an XX male sex reversal gene in mice and humans

Edwina Sutton,¹ James Hughes,¹ Stefan White,² Ryohei Sekido,³ Jacqueline Tan,² Valerie Arboleda,⁴ Nicholas Rogers,¹ Kevin Knower,⁵ Lynn Rowley,² Helen Eyre,⁶ Karine Rizzoti,³ Dale McAninch,¹ Joao Goncalves,⁷ Jennie Slee,⁸ Erin Turbitt,² Damien Bruno,² Henrik Bengtsson,⁹ Vincent Harley,⁵ Eric Vilain,⁴ Andrew Sinclair,² Robin Lovell-Badge,³ and Paul Thomas¹

性腺における性決定

Somatic Sex Reprogramming of Adult Ovaries to Testes by FOXL2 Ablation

N. Henriette Uhlenhaut,^{1,7} Susanne Jakob,² Katrin Anlag,¹ Tobias Eisenberger,¹ Ryohei Sekido,² Jana Kress,¹ Anna-Corina Treier,¹ Claudia Klugmann,¹ Christian Klasen,¹ Nadine I. Holter,¹ Dieter Riethmacher,³ Günther Schütz,⁴ Austin J. Cooney,⁵ Robin Lovell-Badge,² and Mathias Treier^{1,6,*}

Cell 139, 1130–1142, December 11, 2009

DMRT1 prevents female reprogramming in the postnatal mammalian testis

Clinton K. Matson^{1,2}, Mark W. Murphy¹, Aaron L. Sarver³, Michael D. Griswold⁴, Vivian J. Bardwell^{1,2,3} & David Zarkower^{1,2,3}

Dmrt1

2011, Nature

- •転写因子 (セルトリ細胞、germ cellに発現)
- •メダカ、鶏では男性決定因子 (Matsuda et al, 2002, Nature, Smith et al, 2010, Nature) •KOマウス: 精巣異形成、精子形成(-) (Raymond et al, 2000, GenDev)

1. F. 1

Dmrt1 KO マウス: 成獣後に精巣が卵巣に分化転換する

XY gonad

性腺における性の決定と維持

拮抗的作用の役割それぞれの性腺への分化を効果的に行う「ゆらぎ」による可塑性の保持

ヒトの性分化

法律上の性 心理的な性 社会的な性 (Psychosocial sex, Gender)

IMAGe syndrome

(Intrauterine growth restriction, Metaphyseal dysplasia, congenital Adrenal hypoplasia, Genital anomalies)

VOLUME 44 | NUMBER 7 | JULY 2012 NATURE GENETICS

FIG. 1. a: Frontal view showing frontal bossing, depressed nasal bridge, and short nose. b: Profile showing simple, low-set cupped ears. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com]

- CDKN1C: 細胞周期に重要な役割を果たす
- IMAGeの変異: ユビキチン化が障害される
 >蛋白の安定性増加=機能獲得変異
 ←→Beckwith-Wiedemann Synd. の変異

今日の内容

- Y染色体
 - Sry & Eif2s3y

"Minimalist Y"

- 性腺分化
 - 精巣分化

新たなDSD原因遺伝子の発見へ

- ・SRY制御、TESCOとSOX分子
- 精巣、卵巣分化cascadeの拮抗的な作用
- 性腺分化以降

– IMAGe 症候群

「ゆらぐ」性

ご清聴ありがとうございました